EFFECTS OF PROSTAGLANDINS $F_2 \propto$ and E_2 on the contractility of Non-pregnant human fallopian tube *IN VITRO*

M.T.M. JIFFRY* AND P. VIRUTAMASEN

Department of Obstetrics and Gynaecology, Chulalongkorn Hospital, Rama IV Road, Bangkok-Thailand

(Received on March 28, 1980)

Summary: The effects of $PGF_{2\infty}$ and PGE_2 on the distal part of the isolated non-pregnant human fallopian tubes obtained from known menstrual phases has been investigated. Both $PGF_{2\infty}$ and PGE_2 produced an increased contractility of fallopian tube. However, $PGF_{2\infty}$ was found to be more potent than PGE_2 and also the contractions produced by the former compound showed wave forms of relatively high amplitude and low in frequency than that produced by the latter compound. These two compounds did not show a priming effect on each other. There was no discernible effect of phase of the menstrual cycle upon the contractile response to PG.

Key words: prostaglandin F2cc and E2 contractility non-pregnant human fallopian tube

INTRODUCTION

The excitability produced by prostaglandin $F_a \propto (PGF_2 \propto)$ on the myometrial and fallopian tubal musculature was undisputed, in human and animal studies conducted in vivo and in vitro (4,5,11). However, there were contradictory findings on the effect of the PGE series on the uterine and fallopian tube musculature. Early in vitro studies on non-pregnant human myometrium indicated that PGE series exerted an antagonistic effect to that produced by PGF₂ \propto (12). However, later *in vitro* studies on pregnant and non-pregnant human myometrium showed increased contractility on exposure to PGE series (3,7,9). A few in vivo studies on both pregnant and non-pregnant human myometrium also showed spasmogenic effects produced by intravenous administration of PGE (6.8). Similarly, in vitro studies conducted on non-pregnant human fallopian tube showed excitatory effects at the proximal region and relaxation at the distal part due to PGE (9). In a later study, the same group demonstrated an increase in motility due to PGE, on the distal part of the non-pregnant human fallopian tube in vitro. However, there were no recent studies done to re-examine the reported contradictory findings on the effect of PGE on the distal part of the non-pregnant human fallopian tube obtained at known phases of the menstrual cycle. Therefore, the present investigation was conducted in vitro, as part of a continuous series of experiments to investigate the effect of PGE₂ as well as PGF₂ \propto on the distal half of the non-pregnant human fallopian tube obtained at different phases of menstrual cycle.

Present address : Department of Physiology, Faculty of Medicine, University of Peradeniya, Sri Lanka

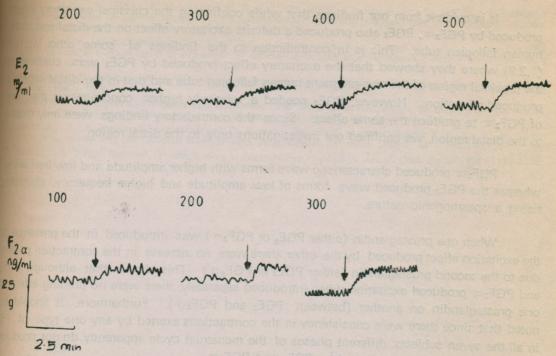
MATERIALS AND METHODS

Distal portions of non-pregnant human fallopian tubes were obtained from patients who had undergone surgery of the uterus due to varied reasons. Specimens from patients with lesions in the fallopian tubes were rejected. The menstrual phase of the patients were assessed by the history.

The specimens were immediately placed in Tyrode's solution (137 mM-NaCl, 2.7 mM-KCl, 1 mM-MgCl₂ 0.35 mM-NaH₂PO₄.2H₂O, 12 mM-NaHCO₃, 1.8 mM-CaCl₂, 5-mM-glucose). Thereafter a 2 cm X 5 mm piece of the intermediate and inner muscular tissue from the most distal end of the specimen was carefully dissected out. This preparation was mounted in a muscle chamber filled with 50 ml of Tyrode's solution at 37°C and allowed to stabilise while it was being bubbled with 5% CO₂ in O₂, so that pH was 7.3-7.4. Contractions of the strips were recorded isometrically with a 50 g strain gauge via an amplifier and pen recorder. Various concentrations of PGE₂ and PGF₂ \propto were added separately and allowed to act only for a maximum period of 3 minutes. After each exposure, the muscle chamber was washed off twice with Tyrode's solution and allowed to stabilise again in fresh Tyrode's solution.

RESULTS

All the seven specimens in this series showed excitability due to $PGF_{g}\alpha$ as well as PGE_{2} and 50 ng/ml and 100 ng/ml respectively were found to be the lowest concentrations required to initiate a change in the contractility (Table I).


Specimen			
	Day of the menstrual cycle	Lowest concentration of PGF _{2cc} ng/ml	Lowest concentration of E ₂ ng/ml
1	5	50	100
2	14	100	100
3	26	75 000 000	200
4	re dell'het de 7 delleme	100	300
5	7	75	200
6	20	75	200
7	22	100	200

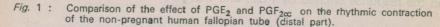
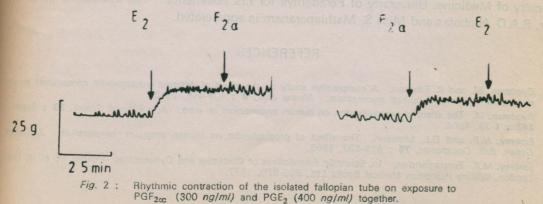

TABLE I : Threshold concentrations of $PGF_{2\infty}$ and PGE_2 to initiate a change in contractility in the distal part of the human fallopian tube at different phases of menstruation.

Figure I shows the increase in rhythmic contraction of the fallopian tube when PGE₂ was added to the solution in different concentrations. The characteristics of excitation produced by PGE₂ is different from that produced by PGF₂ \propto . PGE₂ produced spasmogenic


Volume 24 Number 3

effect with reduced amplitude whereas $PGF_{a} \propto$ produced wave forms of low frequency with a higher amplitude (Fig. 1).

In four specimens obtained from different subjects, when PGE_2 was added in the presence of $PGF_2 \alpha$, there was no resultant increase in the excitation other than what was produced as a result of $PGF_2 \alpha$ (Fig. 2). It was the same when $PGF_2 \alpha$ was added in the presence of PGE_2 .

DISCUSSION

It is evident from our findings that while confirming the classical excitatory effect produced by $PGF_2 \propto$, PGE_2 also produced a definite excitatory effect on the distal part of the human fallopian tube. This is in contradiction to the findings of some other worker (1,2,9) where they showed that the excitatory effect produced by PGE_2 was confined to the proximal region of the non-pregnant human fallopian tube and that in the distal region produced relaxation. However, PGE_2 needed a relatively higher concentration than the of $PGF_2 \propto$ to produce the same effect. Since the contradictory findings were only related to the distal region, we confined our investigations only to the distal region.

 $PGF_2 \propto$ produced characteristic wave forms with higher amplitude and low frequency, whereas the PGE₂ produced wave forms of low amplitude and higher frequency, characterising a spasmogenic nature.

When one prostaglandin (either PGE_2 or $PGF_2 \alpha$) was introduced in the presence of the excitation effect produced by the other, there were no increase in the contraction pattern due to the second prostaglandin (either PGE_2 or $PGF_2 \alpha$) This shows that although PGE_1 and $PGF_2 \alpha$ produced excitation when introduced separately, there were no priming effect of one prostaglandin on another (between PGE_2 and $PGF_2 \alpha$). Furthermore, it should be noted that since there were consistency in the contractions exerted by any one type of PG in all the seven subjects, different phases of the menstrual cycle apparently do not produce an effect on the response elicited by PGE_2 and $PGF_2 \alpha$.

ACKNOWLEDGEMENTS

This study was conducted during the tenure of a UNFPA Fellowship offered to MTMJ. The authors wish to thank Prof. V. Basnayake of the Department of Physiology, Faculty of Medicine, University of Peradeniya for his comments. The assistance given by Mr. R.A.D. Nicholas and Miss S. Mathiaparanam is appreciated.

REFERENCES

- 1. Bygdman, M. and R. Eliasson. A comparative study on the effect of different prostaglandin compounds on the motility of the isolated human myometrium. *Medna Exp.*, **9**: 409-415, 1963.
- 2. Bygdman, M. The effect of prostaglandins on human myometrium in vitro. Acta Physiol. Scand., 23 : Suppl. : 242 : 1-78, 1964.
- 3. Embrey, M.P. and D.L. Morrison. The effect of prostaglandin on human pregnant myometrium. J. Obstet. Gynae. Brit. Commonw., 75: 829-832, 1968.
- Embrey, M.P. Prostaglandins. In, Scientific Foundations of Obstetrics and Gynaecology. Philipp, EE et. al. (ed.) London, William Heineman Medical Books Ltd., 803-820, 1977.

5.

7.

8.

--

11

Voiume 24 Number 3

- 6. Karim, S.M.M. Prostaglandins and Reproduction. In, advances in Prostaglandin Research. Karim, S.M.M. (ed). Lancester, MTP Press, 1975.
- 6. Karim, S.M.M., K. Hillier, K. Somers and R. Trussell. The effect of prostaglandins E₂ and F_{2∞} administered by different routes on uterine activity and the cardiovascular system in pregnant and non-pregnant women. J. Obstet. Gynaec. Brit. Commonow., **78**: 172-178, 1971.
- 7. Midak, E. The action of prostaglandin E₁ (PGE₁) on human pregnant (at the time of labour) and non-pregnant uterus *in vitro* and modification of this action by adrenergic receptor blocking agents. Acta Physiol. Pol., 24 : 537-550, 1970.
- Roth-Brandel, U. Bygdman, N. M. Wiqvist and S. Bergstrom. Prostaglandin for induction of therapeutic abortion. Lancet, 190: 1970.
- 9. Sandberg, F., A. Ingelman-Sundberg and G. Ryden. The effect of prostaglandins E₂ and E₃ on the human uterus and the Fallopian tubes *in vitro*. Acta Obstet. Gynaec. Scand., **43**: 95-102, 1963.
- 16. Sandeberg, F., A. Ingelman-Sunderberg and G. Ryden. The effect of prostaglandin F_{2∞}, F₁, F₂ and F₂ on the human uterus and the fallopian tubes in vitro. Acta. Obstet. Gynaecol. Scand., 44 : 585-594, 1965.
- Speroff, L. and P.W. Ramwell. Prostaglandins in Reproductive Physiology. Am. J. Obst. Gynae., 107: 1111-1130, 1970.